TextAttack Model Zoo¶
TextAttack is model-agnostic - meaning it can run attacks on models implemented in any deep learning framework. Model objects must be able to take a string (or list of strings) and return an output that can be processed by the goal function. For example, machine translation models take a list of strings as input and produce a list of strings as output. Classification and entailment models return an array of scores. As long as the user’s model meets this specification, the model is fit to use with TextAttack.
To help users, TextAttack includes pre-trained models for different common NLP tasks. This makes it easier for users to get started with TextAttack. It also enables a more fair comparison of attacks from the literature.
Available Models¶
TextAttack Models¶
TextAttack has two build-in model types, a 1-layer bidirectional LSTM with a hidden
state size of 150 (lstm
), and a WordCNN with 3 window sizes
(3, 4, 5) and 100 filters for the window size (cnn
). Both models set dropout
to 0.3 and use a base of the 200-dimensional GLoVE embeddings.
transformers
Models¶
Along with the lstm
and cnn
, you can theoretically fine-tune any model based
in the huggingface transformers
repo. Just type the model name (like bert-base-cased
) and it will be automatically
loaded.
Here are some models from transformers that have worked well for us:
bert-base-uncased
andbert-base-cased
distilbert-base-uncased
anddistilbert-base-cased
albert-base-v2
roberta-base
xlnet-base-cased
Evaluation Results of Available Models¶
All evaluation results were obtained using textattack eval
to evaluate models on their default
test dataset (test set, if labels are available, otherwise, eval/validation set). You can use
this command to verify the accuracies for yourself: for example, textattack eval --model roberta-base-mr
.
The LSTM and wordCNN models’ code is available in textattack.models.helpers
. All other models are transformers
imported from the transformers
package. To list evaluate all
TextAttack pretrained models, invoke textattack eval
without specifying a model: textattack eval --num-examples 1000
.
All evaluations shown are on the full validation or test set up to 1000 examples.
LSTM
¶
- AG News (
lstm-ag-news
)datasets
datasetag_news
, splittest
- Correct/Whole: 914/1000
- Accuracy: 91.4%
- IMDB (
lstm-imdb
)datasets
datasetimdb
, splittest
- Correct/Whole: 883/1000
- Accuracy: 88.30%
- Movie Reviews [Rotten Tomatoes] (
lstm-mr
)datasets
datasetrotten_tomatoes
, splitvalidation
- Correct/Whole: 807/1000
- Accuracy: 80.70%
datasets
datasetrotten_tomatoes
, splittest
- Correct/Whole: 781/1000
- Accuracy: 78.10%
- SST-2 (
lstm-sst2
)datasets
datasetglue
, subsetsst2
, splitvalidation
- Correct/Whole: 737/872
- Accuracy: 84.52%
- Yelp Polarity (
lstm-yelp
)datasets
datasetyelp_polarity
, splittest
- Correct/Whole: 922/1000
- Accuracy: 92.20%
wordCNN
¶
- AG News (
cnn-ag-news
)datasets
datasetag_news
, splittest
- Correct/Whole: 910/1000
- Accuracy: 91.00%
- IMDB (
cnn-imdb
)datasets
datasetimdb
, splittest
- Correct/Whole: 863/1000
- Accuracy: 86.30%
- Movie Reviews [Rotten Tomatoes] (
cnn-mr
)datasets
datasetrotten_tomatoes
, splitvalidation
- Correct/Whole: 794/1000
- Accuracy: 79.40%
datasets
datasetrotten_tomatoes
, splittest
- Correct/Whole: 768/1000
- Accuracy: 76.80%
- SST-2 (
cnn-sst2
)datasets
datasetglue
, subsetsst2
, splitvalidation
- Correct/Whole: 721/872
- Accuracy: 82.68%
- Yelp Polarity (
cnn-yelp
)datasets
datasetyelp_polarity
, splittest
- Correct/Whole: 913/1000
- Accuracy: 91.30%
albert-base-v2
¶
- AG News (
albert-base-v2-ag-news
)datasets
datasetag_news
, splittest
- Correct/Whole: 943/1000
- Accuracy: 94.30%
- CoLA (
albert-base-v2-cola
)datasets
datasetglue
, subsetcola
, splitvalidation
- Correct/Whole: 829/1000
- Accuracy: 82.90%
- IMDB (
albert-base-v2-imdb
)datasets
datasetimdb
, splittest
- Correct/Whole: 913/1000
- Accuracy: 91.30%
- Movie Reviews [Rotten Tomatoes] (
albert-base-v2-mr
)datasets
datasetrotten_tomatoes
, splitvalidation
- Correct/Whole: 882/1000
- Accuracy: 88.20%
datasets
datasetrotten_tomatoes
, splittest
- Correct/Whole: 851/1000
- Accuracy: 85.10%
- Quora Question Pairs (
albert-base-v2-qqp
)datasets
datasetglue
, subsetqqp
, splitvalidation
- Correct/Whole: 914/1000
- Accuracy: 91.40%
- Recognizing Textual Entailment (
albert-base-v2-rte
)datasets
datasetglue
, subsetrte
, splitvalidation
- Correct/Whole: 211/277
- Accuracy: 76.17%
- SNLI (
albert-base-v2-snli
)datasets
datasetsnli
, splittest
- Correct/Whole: 883/1000
- Accuracy: 88.30%
- SST-2 (
albert-base-v2-sst2
)datasets
datasetglue
, subsetsst2
, splitvalidation
- Correct/Whole: 807/872
- Accuracy: 92.55%)
- STS-b (
albert-base-v2-stsb
)datasets
datasetglue
, subsetstsb
, splitvalidation
- Pearson correlation: 0.9041359738552746
- Spearman correlation: 0.8995912861209745
- WNLI (
albert-base-v2-wnli
)datasets
datasetglue
, subsetwnli
, splitvalidation
- Correct/Whole: 42/71
- Accuracy: 59.15%
- Yelp Polarity (
albert-base-v2-yelp
)datasets
datasetyelp_polarity
, splittest
- Correct/Whole: 963/1000
- Accuracy: 96.30%
bert-base-uncased
¶
- AG News (
bert-base-uncased-ag-news
)datasets
datasetag_news
, splittest
- Correct/Whole: 942/1000
- Accuracy: 94.20%
- CoLA (
bert-base-uncased-cola
)datasets
datasetglue
, subsetcola
, splitvalidation
- Correct/Whole: 812/1000
- Accuracy: 81.20%
- IMDB (
bert-base-uncased-imdb
)datasets
datasetimdb
, splittest
- Correct/Whole: 919/1000
- Accuracy: 91.90%
- MNLI matched (
bert-base-uncased-mnli
)datasets
datasetglue
, subsetmnli
, splitvalidation_matched
- Correct/Whole: 840/1000
- Accuracy: 84.00%
- Movie Reviews [Rotten Tomatoes] (
bert-base-uncased-mr
)datasets
datasetrotten_tomatoes
, splitvalidation
- Correct/Whole: 876/1000
- Accuracy: 87.60%
datasets
datasetrotten_tomatoes
, splittest
- Correct/Whole: 838/1000
- Accuracy: 83.80%
- MRPC (
bert-base-uncased-mrpc
)datasets
datasetglue
, subsetmrpc
, splitvalidation
- Correct/Whole: 358/408
- Accuracy: 87.75%
- QNLI (
bert-base-uncased-qnli
)datasets
datasetglue
, subsetqnli
, splitvalidation
- Correct/Whole: 904/1000
- Accuracy: 90.40%
- Quora Question Pairs (
bert-base-uncased-qqp
)datasets
datasetglue
, subsetqqp
, splitvalidation
- Correct/Whole: 924/1000
- Accuracy: 92.40%
- Recognizing Textual Entailment (
bert-base-uncased-rte
)datasets
datasetglue
, subsetrte
, splitvalidation
- Correct/Whole: 201/277
- Accuracy: 72.56%
- SNLI (
bert-base-uncased-snli
)datasets
datasetsnli
, splittest
- Correct/Whole: 894/1000
- Accuracy: 89.40%
- SST-2 (
bert-base-uncased-sst2
)datasets
datasetglue
, subsetsst2
, splitvalidation
- Correct/Whole: 806/872
- Accuracy: 92.43%)
- STS-b (
bert-base-uncased-stsb
)datasets
datasetglue
, subsetstsb
, splitvalidation
- Pearson correlation: 0.8775458937815515
- Spearman correlation: 0.8773251339980935
- WNLI (
bert-base-uncased-wnli
)datasets
datasetglue
, subsetwnli
, splitvalidation
- Correct/Whole: 40/71
- Accuracy: 56.34%
- Yelp Polarity (
bert-base-uncased-yelp
)datasets
datasetyelp_polarity
, splittest
- Correct/Whole: 963/1000
- Accuracy: 96.30%
distilbert-base-cased
¶
- CoLA (
distilbert-base-cased-cola
)datasets
datasetglue
, subsetcola
, splitvalidation
- Correct/Whole: 786/1000
- Accuracy: 78.60%
- MRPC (
distilbert-base-cased-mrpc
)datasets
datasetglue
, subsetmrpc
, splitvalidation
- Correct/Whole: 320/408
- Accuracy: 78.43%
- Quora Question Pairs (
distilbert-base-cased-qqp
)datasets
datasetglue
, subsetqqp
, splitvalidation
- Correct/Whole: 908/1000
- Accuracy: 90.80%
- SNLI (
distilbert-base-cased-snli
)datasets
datasetsnli
, splittest
- Correct/Whole: 861/1000
- Accuracy: 86.10%
- SST-2 (
distilbert-base-cased-sst2
)datasets
datasetglue
, subsetsst2
, splitvalidation
- Correct/Whole: 785/872
- Accuracy: 90.02%)
- STS-b (
distilbert-base-cased-stsb
)datasets
datasetglue
, subsetstsb
, splitvalidation
- Pearson correlation: 0.8421540899520146
- Spearman correlation: 0.8407155030382939
distilbert-base-uncased
¶
- AG News (
distilbert-base-uncased-ag-news
)datasets
datasetag_news
, splittest
- Correct/Whole: 944/1000
- Accuracy: 94.40%
- CoLA (
distilbert-base-uncased-cola
)datasets
datasetglue
, subsetcola
, splitvalidation
- Correct/Whole: 786/1000
- Accuracy: 78.60%
- IMDB (
distilbert-base-uncased-imdb
)datasets
datasetimdb
, splittest
- Correct/Whole: 903/1000
- Accuracy: 90.30%
- MNLI matched (
distilbert-base-uncased-mnli
)datasets
datasetglue
, subsetmnli
, splitvalidation_matched
- Correct/Whole: 817/1000
- Accuracy: 81.70%
- MRPC (
distilbert-base-uncased-mrpc
)datasets
datasetglue
, subsetmrpc
, splitvalidation
- Correct/Whole: 350/408
- Accuracy: 85.78%
- QNLI (
distilbert-base-uncased-qnli
)datasets
datasetglue
, subsetqnli
, splitvalidation
- Correct/Whole: 860/1000
- Accuracy: 86.00%
- Recognizing Textual Entailment (
distilbert-base-uncased-rte
)datasets
datasetglue
, subsetrte
, splitvalidation
- Correct/Whole: 180/277
- Accuracy: 64.98%
- STS-b (
distilbert-base-uncased-stsb
)datasets
datasetglue
, subsetstsb
, splitvalidation
- Pearson correlation: 0.8421540899520146
- Spearman correlation: 0.8407155030382939
- WNLI (
distilbert-base-uncased-wnli
)datasets
datasetglue
, subsetwnli
, splitvalidation
- Correct/Whole: 40/71
- Accuracy: 56.34%
roberta-base
¶
- AG News (
roberta-base-ag-news
)datasets
datasetag_news
, splittest
- Correct/Whole: 947/1000
- Accuracy: 94.70%
- CoLA (
roberta-base-cola
)datasets
datasetglue
, subsetcola
, splitvalidation
- Correct/Whole: 857/1000
- Accuracy: 85.70%
- IMDB (
roberta-base-imdb
)datasets
datasetimdb
, splittest
- Correct/Whole: 941/1000
- Accuracy: 94.10%
- Movie Reviews [Rotten Tomatoes] (
roberta-base-mr
)datasets
datasetrotten_tomatoes
, splitvalidation
- Correct/Whole: 899/1000
- Accuracy: 89.90%
datasets
datasetrotten_tomatoes
, splittest
- Correct/Whole: 883/1000
- Accuracy: 88.30%
- MRPC (
roberta-base-mrpc
)datasets
datasetglue
, subsetmrpc
, splitvalidation
- Correct/Whole: 371/408
- Accuracy: 91.18%
- QNLI (
roberta-base-qnli
)datasets
datasetglue
, subsetqnli
, splitvalidation
- Correct/Whole: 917/1000
- Accuracy: 91.70%
- Recognizing Textual Entailment (
roberta-base-rte
)datasets
datasetglue
, subsetrte
, splitvalidation
- Correct/Whole: 217/277
- Accuracy: 78.34%
- SST-2 (
roberta-base-sst2
)datasets
datasetglue
, subsetsst2
, splitvalidation
- Correct/Whole: 820/872
- Accuracy: 94.04%)
- STS-b (
roberta-base-stsb
)datasets
datasetglue
, subsetstsb
, splitvalidation
- Pearson correlation: 0.906067852162708
- Spearman correlation: 0.9025045272903051
- WNLI (
roberta-base-wnli
)datasets
datasetglue
, subsetwnli
, splitvalidation
- Correct/Whole: 40/71
- Accuracy: 56.34%
xlnet-base-cased
¶
- CoLA (
xlnet-base-cased-cola
)datasets
datasetglue
, subsetcola
, splitvalidation
- Correct/Whole: 800/1000
- Accuracy: 80.00%
- IMDB (
xlnet-base-cased-imdb
)datasets
datasetimdb
, splittest
- Correct/Whole: 957/1000
- Accuracy: 95.70%
- Movie Reviews [Rotten Tomatoes] (
xlnet-base-cased-mr
)datasets
datasetrotten_tomatoes
, splitvalidation
- Correct/Whole: 908/1000
- Accuracy: 90.80%
datasets
datasetrotten_tomatoes
, splittest
- Correct/Whole: 876/1000
- Accuracy: 87.60%
- MRPC (
xlnet-base-cased-mrpc
)datasets
datasetglue
, subsetmrpc
, splitvalidation
- Correct/Whole: 363/408
- Accuracy: 88.97%
- Recognizing Textual Entailment (
xlnet-base-cased-rte
)datasets
datasetglue
, subsetrte
, splitvalidation
- Correct/Whole: 196/277
- Accuracy: 70.76%
- STS-b (
xlnet-base-cased-stsb
)datasets
datasetglue
, subsetstsb
, splitvalidation
- Pearson correlation: 0.883111673280641
- Spearman correlation: 0.8773439961182335
- WNLI (
xlnet-base-cased-wnli
)datasets
datasetglue
, subsetwnli
, splitvalidation
- Correct/Whole: 41/71
- Accuracy: 57.75%
How we have trained the TextAttack Models¶
- By Oct 2020, TextAttack provides users with 82 pre-trained TextAttack models, including word-level LSTM, word-level CNN, BERT, and other transformer based models pre-trained on various datasets provided by HuggingFace.
- Since TextAttack is integrated with the https://github.com/huggingface/nlp/ library, it can automatically load the test or validation data set for the corresponding pre-trained model. While the literature has mainly focused on classification and entailment, TextAttack’s pretrained models enable research on the robustness of models across all GLUE tasks.
- We host all TextAttack Models at huggingface Model Hub: https://huggingface.co/textattack
Training details for each TextAttack Model¶
All of our models have model cards on the HuggingFace model hub. So for now, the easiest way to figure this out is as follows:
- Please Go to our page on the model hub: https://huggingface.co/textattack
- Find the model you’re looking for and select its page, for instance: https://huggingface.co/textattack/roberta-base-imdb
- Scroll down to the end of the page, looking for model card section. Here it is the details of the model training for that specific TextAttack model.
- BTW: For each of our transformers, we selected the best out of a grid search over a bunch of possible hyperparameters. So the model training hyperparemeter actually varies from model to model.
More details on TextAttack fine-tuned NLP models (details on target NLP task, input type, output type, SOTA results on paperswithcode; model card on huggingface):¶
Fine-tuned Model | NLP Task | Input type | Output Type | paperswithcode.com SOTA | huggingface.co Model Card |
---|---|---|---|---|---|
albert-base-v2-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | https://paperswithcode.com/sota/linguistic-acceptability-on-cola | https://huggingface.co/textattack/albert-base-v2-CoLA |
bert-base-uncased-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | none yet | https://huggingface.co/textattack/bert-base-uncased-CoLA |
distilbert-base-cased-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | https://paperswithcode.com/sota/linguistic-acceptability-on-cola | https://huggingface.co/textattack/distilbert-base-cased-CoLA |
distilbert-base-uncased-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | https://paperswithcode.com/sota/linguistic-acceptability-on-cola | https://huggingface.co/textattack/distilbert-base-uncased-CoLA |
roberta-base-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | https://paperswithcode.com/sota/linguistic-acceptability-on-cola | https://huggingface.co/textattack/roberta-base-CoLA |
xlnet-base-cased-CoLA | linguistic acceptability | single sentences | binary (1=acceptable/ 0=unacceptable) | https://paperswithcode.com/sota/linguistic-acceptability-on-cola | https://huggingface.co/textattack/xlnet-base-cased-CoLA |
albert-base-v2-RTE | natural language inference | sentence pairs (1 premise and 1 hypothesis) | binary(0=entailed/1=not entailed) | https://paperswithcode.com/sota/natural-language-inference-on-rte | https://huggingface.co/textattack/albert-base-v2-RTE |
albert-base-v2-snli | natural language inference | sentence pairs | accuracy (0=entailment, 1=neutral,2=contradiction) | none yet | https://huggingface.co/textattack/albert-base-v2-snli |
albert-base-v2-WNLI | natural language inference | sentence pairs | binary | https://paperswithcode.com/sota/natural-language-inference-on-wnli | https://huggingface.co/textattack/albert-base-v2-WNLI |
bert-base-uncased-MNLI | natural language inference | sentence pairs (1 premise and 1 hypothesis) | accuracy (0=entailment, 1=neutral,2=contradiction) | none yet | https://huggingface.co/textattack/bert-base-uncased-MNLI |
bert-base-uncased-QNLI | natural language inference | question/answer pairs | binary (1=unanswerable/ 0=answerable) | none yet | https://huggingface.co/textattack/bert-base-uncased-QNLI |
bert-base-uncased-RTE | natural language inference | sentence pairs (1 premise and 1 hypothesis) | binary(0=entailed/1=not entailed) | none yet | https://huggingface.co/textattack/bert-base-uncased-RTE |
bert-base-uncased-snli | natural language inference | sentence pairs | accuracy (0=entailment, 1=neutral,2=contradiction) | none yet | https://huggingface.co/textattack/bert-base-uncased-snli |
bert-base-uncased-WNLI | natural language inference | sentence pairs | binary | none yet | https://huggingface.co/textattack/bert-base-uncased-WNLI |
distilbert-base-cased-snli | natural language inference | sentence pairs | accuracy (0=entailment, 1=neutral,2=contradiction) | none yet | https://huggingface.co/textattack/distilbert-base-cased-snli |
distilbert-base-uncased-MNLI | natural language inference | sentence pairs (1 premise and 1 hypothesis) | accuracy (0=entailment,1=neutral, 2=contradiction) | none yet | https://huggingface.co/textattack/distilbert-base-uncased-MNLI |
distilbert-base-uncased-RTE | natural language inference | sentence pairs (1 premise and 1 hypothesis) | binary(0=entailed/1=not entailed) | https://paperswithcode.com/sota/natural-language-inference-on-rte | https://huggingface.co/textattack/distilbert-base-uncased-RTE |
distilbert-base-uncased-WNLI | natural language inference | sentence pairs | binary | https://paperswithcode.com/sota/natural-language-inference-on-wnli | https://huggingface.co/textattack/distilbert-base-uncased-WNLI |
roberta-base-QNLI | natural language inference | question/answer pairs | binary (1=unanswerable/ 0=answerable) | https://paperswithcode.com/sota/natural-language-inference-on-qnli | https://huggingface.co/textattack/roberta-base-QNLI |
roberta-base-RTE | natural language inference | sentence pairs (1 premise and 1 hypothesis) | binary(0=entailed/1=not entailed) | https://paperswithcode.com/sota/natural-language-inference-on-rte | https://huggingface.co/textattack/roberta-base-RTE |
roberta-base-WNLI | natural language inference | sentence pairs | binary | https://paperswithcode.com/sota/natural-language-inference-on-wnli | https://huggingface.co/textattack/roberta-base-WNLI |
xlnet-base-cased-RTE | natural language inference | sentence pairs (1 premise and 1 hypothesis) | binary(0=entailed/1=not entailed) | https://paperswithcode.com/sota/ natural-language-inference-on-rte | https://huggingface.co/textattack/xlnet-base-cased-RTE |
xlnet-base-cased-WNLI | natural language inference | sentence pairs | binary | none yet | https://huggingface.co/textattack/xlnet-base-cased-WNLI |
albert-base-v2-QQP | paraphrase similarity | question pairs | binary (1=similar/0=not similar) | https://paperswithcode.com/sota/question-answering-on-quora-question-pairs | https://huggingface.co/textattack/albert-base-v2-QQP |
bert-base-uncased-QQP | paraphrase similarity | question pairs | binary (1=similar/0=not similar) | https://paperswithcode.com/sota/question-answering-on-quora-question-pairs | https://huggingface.co/textattack/bert-base-uncased-QQP |
distilbert-base-uncased-QNLI | question answering/natural language inference | question/answer pairs | binary (1=unanswerable/ 0=answerable) | https://paperswithcode.com/sota/natural-language-inference-on-qnli | https://huggingface.co/textattack/distilbert-base-uncased-QNLI |
distilbert-base-cased-QQP | question answering/paraphrase similarity | question pairs | binary (1=similar/ 0=not similar) | https://paperswithcode.com/sota/question-answering-on-quora-question-pairs | https://huggingface.co/textattack/distilbert-base-cased-QQP |
albert-base-v2-STS-B | semantic textual similarity | sentence pairs | similarity (0.0 to 5.0) | https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark | https://huggingface.co/textattack/albert-base-v2-STS-B |
bert-base-uncased-MRPC | semantic textual similarity | sentence pairs | binary (1=similar/0=not similar) | none yet | https://huggingface.co/textattack/bert-base-uncased-MRPC |
bert-base-uncased-STS-B | semantic textual similarity | sentence pairs | similarity (0.0 to 5.0) | none yet | https://huggingface.co/textattack/bert-base-uncased-STS-B |
distilbert-base-cased-MRPC | semantic textual similarity | sentence pairs | binary (1=similar/0=not similar) | https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc | https://huggingface.co/textattack/distilbert-base-cased-MRPC |
distilbert-base-cased-STS-B | semantic textual similarity | sentence pairs | similarity (0.0 to 5.0) | https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark | https://huggingface.co/textattack/distilbert-base-cased-STS-B |
distilbert-base-uncased-MRPC | semantic textual similarity | sentence pairs | binary (1=similar/0=not similar) | https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc | https://huggingface.co/textattack/distilbert-base-uncased-MRPC |
roberta-base-MRPC | semantic textual similarity | sentence pairs | binary (1=similar/0=not similar) | https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc | https://huggingface.co/textattack/roberta-base-MRPC |
roberta-base-STS-B | semantic textual similarity | sentence pairs | similarity (0.0 to 5.0) | https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark | https://huggingface.co/textattack/roberta-base-STS-B |
xlnet-base-cased-MRPC | semantic textual similarity | sentence pairs | binary (1=similar/0=not similar) | https://paperswithcode.com/sota/semantic-textual-similarity-on-mrpc | https://huggingface.co/textattack/xlnet-base-cased-MRPC |
xlnet-base-cased-STS-B | semantic textual similarity | sentence pairs | similarity (0.0 to 5.0) | https://paperswithcode.com/sota/semantic-textual-similarity-on-sts-benchmark | https://huggingface.co/textattack/xlnet-base-cased-STS-B |
albert-base-v2-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | https://huggingface.co/textattack/albert-base-v2-imdb |
albert-base-v2-rotten-tomatoes | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | https://huggingface.co/textattack/albert-base-v2-rotten-tomatoes |
albert-base-v2-SST-2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary | https://huggingface.co/textattack/albert-base-v2-SST-2 |
albert-base-v2-yelp-polarity | sentiment analysis | yelp reviews | binary (1=good/0=bad) | none yet | https://huggingface.co/textattack/albert-base-v2-yelp-polarity |
bert-base-uncased-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | https://huggingface.co/textattack/bert-base-uncased-imdb |
bert-base-uncased-rotten-tomatoes | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | https://huggingface.co/textattack/bert-base-uncased-rotten-tomatoes |
bert-base-uncased-SST-2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary | https://huggingface.co/textattack/bert-base-uncased-SST-2 |
bert-base-uncased-yelp-polarity | sentiment analysis | yelp reviews | binary (1=good/0=bad) | https://paperswithcode.com/sota/sentiment-analysis-on-yelp-binary | https://huggingface.co/textattack/bert-base-uncased-yelp-polarity |
cnn-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | https://paperswithcode.com/sota/sentiment-analysis-on-imdb | none |
cnn-mr | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | none |
cnn-sst2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary | none |
cnn-yelp | sentiment analysis | yelp reviews | binary (1=good/0=bad) | https://paperswithcode.com/sota/sentiment-analysis-on-yelp-binary | none |
distilbert-base-cased-SST-2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary | https://huggingface.co/textattack/distilbert-base-cased-SST-2 |
distilbert-base-uncased-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | https://paperswithcode.com/sota/sentiment-analysis-on-imdb | https://huggingface.co/textattack/distilbert-base-uncased-imdb |
distilbert-base-uncased-rotten-tomatoes | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | https://huggingface.co/textattack/distilbert-base-uncased-rotten-tomatoes |
lstm-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | https://paperswithcode.com/sota/sentiment-analysis-on-imdb | none |
lstm-mr | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | none |
lstm-sst2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | none yet | none |
lstm-yelp | sentiment analysis | yelp reviews | binary (1=good/0=bad) | none yet | none |
roberta-base-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | https://huggingface.co/textattack/roberta-base-imdb |
roberta-base-rotten-tomatoes | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | https://huggingface.co/textattack/roberta-base-rotten-tomatoes |
roberta-base-SST-2 | sentiment analysis | phrases | accuracy (0.0000 to 1.0000) | https://paperswithcode.com/sota/sentiment-analysis-on-sst-2-binary | https://huggingface.co/textattack/roberta-base-SST-2 |
xlnet-base-cased-imdb | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | https://huggingface.co/textattack/xlnet-base-cased-imdb |
xlnet-base-cased-rotten-tomatoes | sentiment analysis | movie reviews | binary (1=good/0=bad) | none yet | https://huggingface.co/textattack/xlnet-base-cased-rotten-tomatoes |
albert-base-v2-ag-news | text classification | news articles | news category | none yet | https://huggingface.co/textattack/albert-base-v2-ag-news |
bert-base-uncased-ag-news | text classification | news articles | news category | none yet | https://huggingface.co/textattack/bert-base-uncased-ag-news |
cnn-ag-news | text classification | news articles | news category | https://paperswithcode.com/sota/text-classification-on-ag-news | none |
distilbert-base-uncased-ag-news | text classification | news articles | news category | none yet | https://huggingface.co/textattack/distilbert-base-uncased-ag-news |
lstm-ag-news | text classification | news articles | news category | https://paperswithcode.com/sota/text-classification-on-ag-news | none |
roberta-base-ag-news | text classification | news articles | news category | none yet | https://huggingface.co/textattack/roberta-base-ag-news |